-
아주대 연구진이 사람의 눈에는 보이지 않는 적외선 빛을 전류 신호로 전환할 수 있는 유기 소재를 개발했다. 이 소재를 이용하면 적외선 빛을 고감도로 감지할 수 있어 자율주행차와 우주 및 군사 시설, 바이오 헬스케어 분야에 활용될 수 있을 전망이다. 김종현 교수(아주대 응용화학생명공학과·대학원 분자과학기술학과)는 한국화학연구원(KRICT, 원장 이영국) 고서진·윤성철 박사 연구팀과의 공동 연구를 통해 근적외선 광을 효율적으로 흡수할 수 있는 유기 반도체 소재와, 이를 이용한 유기 포토디텍터(Photodetector) 소자를 개발했다고 밝혔다. 해당 내용은 ‘신규 비풀러렌계 비대칭 전자수용소재를 이용한 고광검출력 근적외선 유기 포토디텍터 개발(High Detectivity Near Infrared Organic Photodetectors Using an Asymmetric Non-Fullerene Acceptor for Optimal Nanomorphology and Suppressed Dark Current)’이라는 제목으로 소재 분야 저명 학술지인 <ACS Nano>에 지난 10월 게재됐다. 아주대 이아영 학생(분자과학기술학과 석박사 통합과정), 한국화학연구원의 하종운 박사가 공동 제1저자로 참여했고 아주대 김종현 교수와 한국화학연구원 고서진·윤성철 박사는 공동 교신저자로 함께 했다. 아주대 연구팀이 포토디텍터 소자 설계와 성능 최적화 연구를 수행했고 한국화학연구원에서는 근적외선 흡광 소재 개발 연구를 맡았다. 우리 학교 박성준 교수(전자공학과·지능형반도체공학과)와 허준석 교수(지능형반도체공학과·전자공학과) 연구팀도 소자 분석 연구에 참여했다.적외선은 가시광선과 달리 사람이 직접 눈으로 확인할 수는 없으나 다양한 분야에서 이용되고 있다. 인체를 비롯한 생물체와 엔진, 천체 등이 방출하는 열을 이미지화하여 감지하고 식별할 수 있기 때문이다. 이에 자율 주행차와 우주·군사 시설을 비롯해 바이오 헬스케어 센서, 광통신 등의 분야에서 활용되고 있다. 광 송수신을 통한 장애물 감지 라이다 시스템, 열 신호 감지 나이트 비전·열화상 카메라, 그리고 생체 내 분자 수준의 변화를 영상화하는 바이오이미징 등으로 학계와 산업계에서 사용하고 있는 것. 특히 유기물 반도체는 가볍고 휘어지는 특성을 가지고 있어, 이를 이용한 웨어러블 적외선 센서의 구현이 가능하다. 그러나 적외선 대역의 광신호는 낮은 에너지를 가지고 있어 일상 생활에 존재하는 여러 노이즈 신호와 구분이 힘들고, 소재 개발이 어려워 장파장 근적외선을 민감하게 감지할 수 있는 유기 포토디텍터의 개발은 뒤처져 있다. 포토디텍터는 광신호를 전류신호로 변환시켜주는 기능을 하는 핵심 전자 소자로, 스마트폰을 비롯한 모바일 기기의 디지털 카메라에서 이미지를 구현하는 역할을 하는 소자를 말한다. 우리 눈으로 식별할 수 있는 가시광 신호를 전류로 변환하는 포토디텍터는 무기물 실리콘 반도체 소재를 기반으로 상용화되어 있다. 이에 공동 연구팀은 광흡수 파장 제어가 용이하면서도 근적외선 광을 잘 흡수할 수 있는 유기물 근적외선 흡수 소재를 개발, 해당 소재를 이용한 박막(film)의 나노구조를 제어하는 방식을 통해 고감도 근적외선 포토디텍터를 구현하고자 했다. 즉, 1000nm 이상 파장대의 근적외선을 효율적으로 흡수하면서도 이상적인 박막나노구조를 형성할 수 있는 비풀러렌 계열(전통적으로 사용되어온 풀러렌계열의 전자수용 유기분자의 화학구조를 탈피한 다른 구조를 가지는 소재군)의 유기 반도체 소재들의 개발과 최적의 소자구조 설계, 소자 성능의 최적화 방안을 함께 연구해 온 것이다.공동 연구팀은 이번에 개발한 유기 반도체 소재를 공액고분자와 함께 벌크헤테로졍션(전자를 제공하는 공액고분자와 전자를 수용하는 유기 반도체 소재를 함께 섞어서 pn졍션을 형성하는 방법. pn졍션은 p형반도체와 n형반도체의 접합을 의미) 필름으로 제작하여 포토디텍터에 적용할 때, 1000nm 근적외선 광에 대해 1012 Jones 이상 높은 수준의 광감지가 가능한 고감도 광센서의 구현이 가능함을 확인했다. 이는 기존에 상용화된 실리콘 포토디텍터 보다 4~5배 더 높은 수준이다. 연구팀은 나아가 신규 소재를 기반으로 제작된 고감도 포토디텍터를 이용하여 광 혈류 측정 센서에 응용, 신체 맥파 분석에도 성공했다. 이번에 개발된 포토디텍터를 이용하면 혈관의 건강 상태도 정밀 감지할 수 있다는 설명이다. 아주대 김종현 교수는 “그동안 1000nm 이상 근적외선 빛의 고감도 검출에 여러 어려움이 있었으나, 이번 연구로 해결책을 제시할 수 있게 됐다”며“이번에 개발한 소재·소자 기술이 고감도의 근적외선 카메라와 적외선 통신, 바이오 헬스케어 센서 등 여러 신산업에 활용될 수 있을 것으로 기대한다”고 말했다. 고서진 한국화학연구원 책임연구원은 “이번 연구는 근적외선 광센서 분야를 이끌어 갈 수 있는 세계적 수준의 성과”라며 “동시에 상업화 가능성이 매우 높은 원천 소재 및 소자 기술이라는 점에서 그 의미가 크다”라고 전했다. 한편 연구팀은 앞서 ‘시아노기 치환형 비풀러렌계 유기전자수용 소재 개발 및 이를 이용한 1000nm 이상 근적외선 광의 고검출 감지가 가능한 고성능 유기 포토디텍터 구현(Effect of Cyano Substitution on Non-Fullerene Acceptor for Near-Infrared Organic Photodetectors above 1000nm)’이라는 제목의 논문도 발표했다. 이번 연구 성과와 동일 선상의 연구로, 소재 분야 저명 학술지 <어드밴스트 펑셔널 머터리얼즈(Advanced Functional Materials)> 2월호의 표지논문으로 선정됐다. <ACS Nano>에 실린 공동 연구팀의 논문 내용을 설명하는 이미지. 비대칭 비풀러렌 전자수용소재를 이용한 고성능 근적외선 광 감지 센서와, 이를 이용한 광 혈류 측정 센서*제일 위 사진 - 연구팀의 연구성과가 소개된 <어드밴스트 펑셔널 머터리얼즈(Advanced Functional Materials)>2월호 표지
-
132
- 작성자통합 관리자
- 작성일2023-11-22
- 2360
- 동영상동영상
-
-
130
- 작성자통합 관리자
- 작성일2023-11-22
- 2283
- 동영상동영상
-
우리 학교 서형탁 교수팀과 이상운 교수팀이 진행해온 산학협력 연구결과가 SCI 저널 <어드밴스드 머터리얼즈 테크놀로지> 특별판에 소개됐다. <어드밴스드 머터리얼즈 테크놀로지(Advanced Materials Technology)>는 10월24일자 이슈를 ‘한국 대학-기업 연구 협력’을 주제로 한 특별판(Special Issue: University–Industry Research Collaborations in South Korea)으로 펴냈다.이 특별판에는 아주대를 비롯한 서울대, KAIST, 연세대, 성균관대, 한양대 등 주요 대학들과 삼성전자, 삼성종합기술원, SK하이닉스, 큐셀, 선익시스템 등 한국의 반도체·디스플레이·태양전지 분야 기업들과의 대표적 산학 연구결과가 소개됐다. 그 중 아주대 서형탁 교수(첨단신소재공학과·대학원 에너지시스템학과)와 이상운 교수(물리학과·대학원 에너지시스템학과)의 연구는 D램(DRAM, Dynamic Random Access Memory)의 핵심 분석과 공정 분야에 대한 내용으로, 삼성전자 반도체연구소와의 공동 연구다. D램은 크게 외부 입력에 따라 쓰기 및 읽기 동작을 하는 트랜지스터와 정보를 저장하는 커패시터로 구성된다. 최근 메모리 집적화로 단위면적당 전하(정보)저장 용량을 극대화하기 위해 고유전체 개발이 진행되어왔다. 또한 3차원 구조의 커패시터를 구성하는 금속과 절연체의 두께가 수 나노미터 수준으로 감소함에 따라 물질들이 계면에서 혼합되어, 신뢰성 문제가 심각하게 대두되었다. 서형탁 교수(첨단신소재공학과·대학원 에너지시스템학과)팀은 지난 2020년부터 삼성전자 반도체연구소 공정개발팀과 D램의 정보(전하)저장 소자인 커패시터의 결함과 계면구조에 대한 분석 및 신뢰성 메커니즘 규명 연구를 진행해왔다. 이번에 특별판에 발표된 논문(Study of Metal–Dielectric Interface for Improving Electrical Properties and Reliability of DRAM Capacitor)이 해당 연구의 성과다. 해당 성과는 이번 호의 커버 이미지로 소개됐다. 서형탁 교수팀은 미세화된 나노 커패시터 내의 금속-고유전체에서 발생하는 결함, 계면 혼합 및 이에 따른 전자 구조 특성을 첨단 광분광학적 분석을 통해 규명하여 소자 신뢰성과 동시 해석하는 내용을 연구했다. 서형탁 교수는 국내 최초로 개발한 내부광전자방출 분석법과 분광타원편광분석 및 이의 광학모델링을 비롯한 다수의 첨단 분석기법을 성공적으로 D램 신뢰성 분석에 적용했다. 이상운 교수(물리학과·대학원 에너지시스템학과)팀은 차세대 D램 커패시터를 개발하는 데 필수적인 고유전율 소재와 전극 소재를 원자층 증착 공정(Atomic Layer Deposition, ALD)으로 개발하는 연구를 수행했다. 해당 연구 역시 삼성전자 반도체연구소와 공동으로 진행되어, <어드밴스드 머터리얼즈 테크놀로지> 특별판에 소개됐다(Toward Advanced High-k and Electrode Thin Films for DRAM Capacitors via Atomic Layer Deposition). 아주대 대학원 에너지시스템학과 박사과정의 김세은, 성주영 학생이 이번 논문의 제1저자로 참여했다. 이상운 교수팀의 연구는 반도체 공정에 적용할 수 있는 최첨단 ALD 공정 개발로 기존 D램 커패시터 개발의 한계를 뛰어넘을 수 있는 가능성을 보여줬다.이번 산학과제를 공동으로 수행해 온 삼성전자 반도체연구소 공정개발실의 임한진 마스터(기술임원)는 “아주대 서형탁·이상운 교수와의 산학협력을 통해 최신 D램 커패시터 공정의 R&D 핵심 요소 기술을 확보할 수 있었으며, 좋은 레퍼런스 기술로 활용하고 있다”며 “해당 산학과제에 참여했던 아주대의 인재들이 다수 삼성전자 반도체연구소에서 연구 활동을 이어가고 있어, 산학협력 연구가 두 기관의 중요한 교두보 역할을 하고 있다”라고 말했다. 서형탁 교수팀의 산학 연구를 소개한 저널 커버이미지와 이상운 교수팀의 D램 커패시터 개요도
-
128
- 작성자통합 관리자
- 작성일2023-11-22
- 2322
- 동영상동영상
-
국내 연구진이 물리학계에서 오랫동안 풀리지 않았던 문제인 마찰전기 대전열의 메커니즘에 대해 이론과 실험을 통해 규명하는 데 성공했다. 이에 마찰전기를 이용한 초소형 IoT 기기, 생체 삽입형 소자와 같은 응용 소자의 상용화에 기여할 것으로 기대된다. 아주대 조성범 교수(첨단신소재공학과, 위 사진 왼쪽) 연구팀은 마찰전기 대전열이 시시각각 다르게 변화하는 메커니즘을 이론과 실험을 통해 규명해냈다고 밝혔다.이번 연구 성과는 물리학 분야 저명 학술지 <피지컬 리뷰 레터스(Physical Review Letters)> 10월20일 자에 게재됐다. 논문 제목은 ‘마찰전기의 불확실성과 재현 불가성에 대한 기계 화학적 메커니즘 연구(Uncertainty and Irreproducibility of Triboelectricity Based on Interface Mechanochemistry)’다. 조성범 아주대 교수와 정창규 전북대 교수(위 사진 오른쪽)가 교신저자로, 현재 영국 임페리얼 칼리지 런던(Imperial College London)의 마리퀴리 펠로우로 재직 중인 줄리오 파티(Giulio Fatti) 박사가 제1저자로 참여했다. 마찰전기는 두 물체가 접촉할 때, 한 물체는 양전하로 다른 한 물체는 음전하로 전기를 띄게 되는(대전, 帶電) 현상이다. 이 현상은 이미 기원전 2500년 전에 발견되었고, 스웨터를 벗을 때 생기는 정전기나 금속으로 된 문고리를 잡을 때 생겨나는 정전기와 같이 우리 실생활에서도 쉽게 목격할 수 있다. 마찰전기는 또한 특정한 물체 사이에서만 생겨나는 것이 아니라, 모든 물질 사이의 접촉에서 생겨난다. 심지어 액체와 고체, 기체와 기체에서도 관측된다. 번개에 축적되는 전하 역시 구름에 있는 물 분자 사이의 접촉에 의한 마찰전기다. 하지만 마찰전기에 대한 과학적 원리는 아직도 미지의 영역으로 남아있다. 약 500년 전부터 과학자들은 어떤 물질은 조금 더 양전하로, 또 다른 물질은 조금 더 음전하로 각각 대전되는 경향을 발견하고, 여러 가지 물질들을 순차적으로 정리하여 ‘마찰전기 대전열’이라고 이름 붙였다. 그러나 아직도 마찰전기 대전열이 어떤 원리로 결정되는지는 완벽하게 밝혀지지 않았다. 심지어 마찰전기 대전열에서 하나의 위치가 아닌 여러 위치에 동시에 존재하는, 불확실하며 재현이 잘 되지 않는 이상한 물질들이 존재하고 있다. 이러한 문제는 마찰전기 대전열에 대한 연구가 시작된 이래 계속 난제로 남아있었다. 최근 글로벌 학계와 산업계에서는 일상 생활에서 흔하게 발생하나 활용하기 어려웠던 작은 움직임을 전기 에너지로 쓰기 위해 에너지 하베스팅(energy harvesting technology) 기술에 많은 관심을 가져왔다. 그러나 마찰전기의 과학적 원리에 대한 불확실성과 디바이스 활용을 위한 신뢰성 문제가 발목을 잡아 왔다. 아주대 공동 연구팀은 이러한 난제를 규명하기 위해 양자역학 기반의 컴퓨터 시뮬레이션과 마찰전기 기반 전자소자를 제작, 전자와 이온의 흐름에 대해 연구했다. 연구팀은 대부분의 물질들에서 전자들이 한 물질로 옮겨갔다가 돌아오지 못하면서(갇힌 전하 이론) 마찰전기가 발생하게 되는 것을 발견했고, 이런 현상이 마찰전기 대전열의 경향성과 잘 맞는 것을 확인하였다. 그러나 대전열에서 이상 현상을 보이는 물질의 경우에는 두 물체가 접촉할 때 전자뿐 아니라 물질에 붙은 이온도 함께 이동하며 전자가 돌아오거나 경로가 굉장히 달라질 수 있고, 전하가 갇히는 지의 여부도 달라지는 것을 확인했다. 특히 두 물질이 접촉할 때마다 이온의 분포가 바뀌기 때문에 마찰전기의 대전 경향성이 매번 달라질 수밖에 없다는 것을 확인했고, 이에 여러 물질을 바꾸고 동일한 실험을 여러 번 반복하는 통계적인 방법까지 활용해 증명했다. 조성범 교수는 “이번 연구는 마찰전기에 대한 오랜 난제를 규명한 연구로, 학술적인 진보에서 더 나아가 마찰전기를 이용한 여러 응용 소자들이 가지고 있는 신뢰성의 문제를 해결할 수 있을 것으로 본다”며 “그동안 신뢰성의 문제로 상용화에 어려움을 겪고 있던 초소형 IoT 기기와 생채 삽입형 소자 같은 마찰전기 에너지 수확 소자의 전원공급을 가능하게 해줄 것으로 기대한다”고 말했다. 이번 연구는 과학기술정보통신부·한국연구재단의 이공기초 우수신진연구사업의 지원을 통해 수행됐다. 공동 연구팀은 마찰시 이온이 전달되며 밴드 사이의 장벽이 달라지고, 이는 갇힌 전하의 양에 큰 영향을 미치는 것을 확인했다.
-
126
- 작성자통합 관리자
- 작성일2023-11-02
- 2934
- 동영상동영상
-
한국·스위스 공동 연구팀이 새로운 유기 결정 설계 기술을 활용해 광대역의 티-레이(T-ray) 소재를 개발하는 데 성공했다. 이 기술을 활용하면 눈에 보이지 않는 영역의 물질 특성을 분석할 수 있어 의료와 반도체·제조 공정의 품질검사 등에 적용이 가능할 전망이다.권오필 아주대 교수(응용화학생명공학과·대학원 분자과학기술학과)는 기존의 비선형광학 결정 설계의 난제를 극복하기 위해 양이온과 음이온의 부피를 조절하는 새로운 결정 설계 기술을 적용, 신규 유기 티-레이 광원을 개발했다고 밝혔다. 이번 연구 성과는 소재 분야 저명 학술지인 <어드밴스드 사이언스(Advanced Science)> 10월22일자 온라인판에 게재됐다. 논문 제목은 ‘반데르발스 부피 조절을 통한 고성능 유기 비선형광학 및 테라헤르츠 결정의 설계(Design of High-Performance Organic Nonlinear Optical and Terahertz Crystals by Controlling the van der Waals Volume)’다.이번 연구에는 아주대 신봉림(대학원 분자과학기술학과 석사 졸업), 박유진(대학원 분자과학기술학과 석사과정 재학) 학생이 스위스 취리히응용과학대학(ZHAW, Zurich University of Applied Sciences)의 우로스 푹(Uros Puc) 박사와 공동 제1저자로 참여했고, 권오필 아주대 교수(응용화학생명공학과·대학원 분자과학기술학과)와 모이짜 야즈빈섹(Mojca Jazbinsek) ZHAW 박사가 공동 교신저자로 함께 했다.‘꿈의 전자파’로 불리는 티-레이는 빛과 전파 영역 사이인 테라헤르츠파(terahertz wave, THz) 영역의 주파수다. 티-레이는 인간의 눈으로는 확인할 수 없는 물체 내부를 투과할 수 있고, 특히 단단한 물질 만을 투과하는 X-레이와 달리 액체 종류까지 식별 가능하다. 또 가시광선이 미칠 수 없는 높은 투과도를 지니면서도, 반도체와 금속 같은 전도성 있는 물질을 감지할 수 있다. 티-레이는 제품이나 재료의 원형을 그대로 보존하는 비파괴 방식으로, 더 많은 물질을 쉽고 세밀하게 분석할 수 있기에 과학계와 산업계의 주목을 받아왔다. 더불어 X-레이와는 달리 인체에 무해하기 때문에 암 진단이나 뇌 수술 같은 의료 분야와 바이오 공학을 비롯해 제조 공정의 품질 검사, 보안, 재료, 환경 등의 분야에서 다양하게 응용할 수 있다. 그러나 기존에 활용되어 온 티-레이 광원은 좁은 대역에서 낮은 효율로 테라헤르츠파를 방출, 볼 수 있는 범위에 한계가 있었다. 이에 광대역의 광원을 얻기 위해서는 고가의 대형 레이저 시스템을 필요로 한다.아주대 공동 연구팀은 고출력·고감도로 테라헤르츠파를 활용할 수 있도록 높은 비선형광학(非線型光學, nonlinear optics) 특성을 가질 수 있는 유기 결정 소재 설계 기술을 연구해왔다. 연구팀은 이온성 유기 결정에서 양이온 분자와 음이온 분자가 반드시 공존해야 한다는 점에 착안하여, 양이온과 음이온 분자의 부피가 특정 비율일 때 높은 비선형광학 특성을 나타낼 것이라는 아이디어를 제시했다. 연구팀은 다양한 부피를 가지는 음이온을 도입하여 양이온과 음이온 분자 부피의 상관관계를 밝혔으며, 이를 통해 새로운 고효율의 비선형광학 유기 결정을 개발하는 데 성공했다. 더불어 신규 이온성 결정이 높은 비선형과학 특성을 바탕으로, 소형의 저가 레이저 시스템을 이용해 광대역의 티-레이를 방출함을 확인했다. 권오필 아주대 교수는 “이번에 제시한 새로운 유기 결정 설계 기술은 최근 여러 한계에 부딪혀 온 티레이 광원 설계 기술 개발에 새로운 물꼬가 될 것”이라며 “티레이 유기 결정의 설계 규칙을 확인했다는 점에서 우연에 의한 새로운 유기 결정의 발견이 아닌, 특정 응용 기술에 최적화된 티레이 유기 결정의 설계가 가능할 것으로 기대한다”라고 말했다. 권 교수는 “연구팀의 새로운 유기 결정 설계 기술은 테라헤르츠파뿐 아니라 다른 가시광이나 적외선 빛의 주파수, 위상 등을 바꿀 수도 있다”며 “레이저와 같은 다양한 주파수 변환 장치나 초고속 광통신 소자 등에 적용될 수 있을 것”이라고 덧붙였다. * 위 사진 설명 - 아주대·ZHAW 연구팀이 개발한 새로운 티-레이(T-ray) 소재 설계 기술에 대한 설명. 왼쪽 아래 보라색 물질이 공동 연구팀에 개발한 고효율의 비선형광학 유기 결정이다. 이 결정은 이온성 퀴놀리니윰으로 구성되어 있으며, 화면 속 결정의 실제 길이는 소자에 적합한 5mm 정도다.
-
124
- 작성자통합 관리자
- 작성일2023-10-26
- 3076
- 동영상동영상